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Fibroblast subtypes in tissues affected by autoimmunity:
with lessons from lymph node fibroblasts R
William D Shipman'?, Marvin J Sandoval®, Keila Veiga®®, et

Laura T Donlin®*® and Theresa T Lu

The recent advent of single-cell technologies has fast-tracked
the discovery of multiple fibroblast subsets in tissues affected
by autoimmune disease. In recent years, interest in lymph node
fibroblasts that support and regulate immune cells has also
grown, leading to an expanding framework of stromal cell
subsets with distinct spatial, transcriptional, and functional
characteristics. Inflammation can drive tissue fibroblasts to
adopt a lymphoid tissue stromal cell phenotype, suggesting
that fibroblasts in diseased tissues can have counterparts in
lymphoid tissues. Here, we examine fibroblast subsets in
tissues affected by autoimmunity in the context of knowledge
gained from studies on lymph node fibroblasts, with the
ultimate aim to better understand stromal cell heterogeneity in
these immunologically reactive tissues.
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Introduction

The heterogeneity of fibroblasts in secondary lymphoid
tissues has been long appreciated, in part because of the
notably distinct anatomic compartments populated by T

2,3,6

versus B cells and aided by the finding of monoclonal
antibodies that recognized compartment-specific stromal
antigens. While studying the thymic stroma in the
1980’s, van Ewijk e7 a/. generated a panel of monoclonal
antibodies. This panel included the ER-TR7 antibody,
which stained vascular structures in the thymus but more
robustly stained fibroblasts that comprised a reticular
network in the T zones of lymph nodes and spleen
[1,2]. In the early 1990’s, Farr and colleagues generated
the antibody clone 8.1.1 to study thymic epithelial cells,
and found that 8.1.1 labelled T zone reticular cells
similarly to ER-TR7 [3]. Using expression cloning, they
identified the antigen as gp38, now also known as podo-
planin, that is used as a defining marker of the reticular
cells now referred to as fibroblastic reticular cells [4].
Although reticular cells also resided in B cell follicles,
ER-TR7 and 8.1.1 notably did not stain these cells,
pointing to the compartment-specific nature of fibro-
blasts in lymphoid tissues. In the B cell follicles, the
distinct meshwork of fibroblast reticular cells, known as
follicular dendritic cells (FDCs) based on their morphol-
ogy, also attracted considerable attention due to their
capacity to bind immune complexes and interact closely
with the B cells. The FDCs, although initially thought to
be of the hematopoietic lineage, are now understood as
originating from mesenchymal stem cells based on line-
age tracing experiments and radioresistance patterns,
and are stained by antibodies such as FDC-M1 (now
known to recognize MFG-E8) and FDC-M2 (comple-
ment factor C4) [5,6]. In the late 1990’s, FDCs were
shown to be primary expressors of CXCL 13, the ligand
for CXCR5, while T zone FRCs, among other cells,
expressed CCL19 and CCLZ21, the ligands for CCR7
[7]. This furthered the understanding of positional spec-
ificity for reticular cells that now included expression of
distinct lymphocyte support factors and laid the founda-
tion for subsequent studies.

Studies in the mid-2000s began to focus in on and
characterize lymph node stromal cells in greater detail.
These studies, often with the addition of flow cytometric
analysis that traded in positional information for more
granular protein expression information, led to further
delineation of stromal subsets within the B cell and T cell
compartments. During this period, marginal reticular cells
(MRCs) in the follicles were identified and T zone FRCs
were better characterized [4,8,9]. It became clear that
there was heterogeneity even within the T zone, as high
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VEGF expression marked a subset of FRCs that were
enriched in vascular-rich regions [10]. Sorting and tran-
scriptomic analysis along with accelerating interest in
stromal cells in the last eight years further expanded
our understanding of FRC subsets and potential func-
tions, including the identification of PDPN-neg fibro-
blasts that resemble pericytes, cortical reticular cells,
BP3-CD34" cells that have a perivascular location in
the medulla, medullary fibroblasts, and the understanding
that FRCs, like synovial fibroblasts, can express cadherin
11 (CDH11) [11,12°°,13-15]. More recently, Rodda ez a/.
used single-cell RNAseq to examine lymph node stromal
cells, identifying 3 subsets of T zone reticular cells and
2 subsets that were enriched in the medulla, in addition to
delineating the FDCS, MRCs, perivascular cells, and
CD34" cells [16°°].

In the last two decades, synovial fibroblasts in rheuma-
toid arthritis (RA) have been increasingly recognized as
active participants in joint inflammation and injury and
encompassing heterogencous phenotypes. Synovial
fibroblasts were observed in the rheumatoid synovium
that share characteristics with those in lymphoid tissues
[17-19], and this paralleled the development of the
understanding that tissue inflammation can drive the
adoption of lymphoid tissue reticular cell phenotype
[20,21]. Recently, high dimensional analysis of human
synovial fibroblasts using single cell RNAseq and mass
cytometry (CyTOF) have helped to define multiple
fibroblast subsets in the inflamed synovium. Here, we
examine synovial fibroblast subsets in the context of
insights gained from studies on lymph node fibroblasts,
with the goal of better conceptualizing the heterogeneity
in both tissues.

Lymph node and synovial stromal subsets: are
there parallels?

Synovial fibroblasts can be divided into two general
categories based on anatomic location. The lining fibro-
blasts, together with macrophages, produce and turn
over the synovial fluid and provide an epithelial-like
layer that separates the fluid from the sublining, albeit
without a basement membrane. Sublining fibroblasts are
interspersed within and likely responsible for generating
the extracellular matrix that constitutes the bulk of the
mass of the sublining tissue under homeostatic states.
Lining fibroblasts are marked by CD55*PRG4* and
Thy1(CD90)"°, in contrast to sublining fibroblasts that
exhibit CD55-PRG4- and Thyl(CD90)" [18,22°°
,23,24°°,25°°,26°°]. Similar to lymph node FRCs, both
lining and sublining fibroblasts in human and mouse
synovium are PDPN* and FAPa* [22°°,26°°,27]
(Table 1), suggesting a degree of resemblance among
these fibroblast populations. Sublining fibroblasts
resemble lymph node FRCs in expressing Thyl, albeit
at higher baseline levels, and both FRCs and sublining
fibroblasts  further upregulate 'Thyl upon an

inflammatory challenge [22°°,26°°,28,29] (Table 1).
Synovial sublining fibroblasts undergo proliferative
expansion upon inflammation, much like FRCs do upon
lymph node inflammation and swelling [22°°,26°%,30]
(Table 1). In RA synovium, a subset of sublining fibro-
blasts exhibit MHCII" CD34- Thyl1* (mirroring the
CD34-Thyl+ murine sublining cells), and both express
inflammatory cytokines and chemokines, much like
FRCs as a whole. In particular, one of the sublining
fibroblast subtypes express high levels of ILL-6 and
CXCL12 [22°°%,26°°], reminiscent of the constitutive
and widespread stromal IL.-6 and CXCL12 expression
by FRCs throughout lymph nodes [12°%,15] ('Table 1).

While tertiary lymphoid structures can form in rheuma-
toid synovium, they are relatively rare in frequency, and
T and B cells typically accumulate in spherical aggregates
wherein both cell types interspersed without distinct
regions such as in the lymph node. In single cell RNA-
seq examination of synovium, there was no obvious
population that resembled the largest FRC subset, the
T zone FRCs (TRGCs), in expressing CCL.21 or CCL.19 or
the T zone and follicular stromal marker BP-3. However,
MHCII" CD34- sublining cells resemble the CCL19™
subset of TRCs that populate the majority of the T zone,
as they are high expressers of extracellular matrix com-
ponents (and CD347"°). In expressing interferon response
genes and MHCII, they also resemble the CXCL9*
subset of TRCs that may represent IFN-activated
CCL19" TRCs [16°%,26°°] (Table 1). Thus, the sizable
population of synovial sublining fibroblasts resemble
TRCs (Figure 1).

Anatomically, synovial lining fibroblasts share similarities
with lymph node marginal reticular cells (MRCs) that sit
at the back border of the B cell follicles just under the
floor of the subcapsular sinus (Figure 1). Notably, both
lining fibroblasts (in mice) and MRCs are unique from
other fibroblasts in their tissues in expressing high levels
of RANKL (T'able 1). RANKL is a driver of osteoclas-
togenesis and of macrophage development more gener-
ally, and the RANKL expression by both lining fibro-
blasts and MRCs may reflect their shared function in their
unique anatomic locations in this regard. Osteoclast acti-
vation by lining fibroblast-derived RANKL would be
consistent with their role in mediating bone and cartilage
damage in inflammatory arthritis [22°°], and MRC-
derived RANKL is important for maintenance of
CD169+ sinusoidal macrophages [33°] that play impor-
tant roles in limiting viral dissemination [34]. Interest-
ingly, Wilms’ Tumorl (WT1)+ mesothelial cells, epithe-
lial-like cells that line cavity surfaces such as the
peritoneum, resemble synovial lining cells and MRCs
in their lining function and their ability to modulate
macrophages and B cells [31,32°]. The WT'1+ mesothelial
cells along with WT'+ fibroblasts were recently shown to
maintain peritoneal macrophages via retinoic acid
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Table 1 (Continued)

Lymph Node Synovium Skin
Fibroblast Subtype Phenotype Function Inflammatory State Ref. Fibroblast Phenotype Function Inflammatory Ref. Fibroblast Phenotype Function Inflammatory state Ref.
Subtype state Subtype
Marginal reticular cells PDPN - back of the B - increased PDPN [11,12] CD55+ PDPN - lining - express RANKL [18,22°%,25%,
(MRCs) + CXCL13+ cell follicle near expression with + Thy1- fibroblasts - can promote 26°°,51]
MAdCAM subcapsular immunization CD34+/— cartilage
+Tnfsf11+ sinus HLA-DR" destruction.
CDH11+ - express CDH11 -increased PDPN
Thyl/° BP3+ CXCL13 and +/— and aSMA
BAFF FAPa+ expression in
- express rheumatoid
RANKL to arthritis
support
macrophages
- can give rise
to FDCs
CXCL12-expressing PDPN+ - regulate B cell - pre-existing follicular  [15,16°°,52] Salivary Gland
reticular cells CXCL12+ trafficking and ~ CRCs later form
(CRCs) CDH11+ germinal center germinal center dark
Thyt " responses zone CRCs during
immune responses
Medullary reticular PDPN+ - express BAFF - increased PDPN [12*7] PDPN+ FAPa+ - support - enriched for IL7 and BAFF in  [43°]
cells CXCL12+ and IL-6 to expression with CD34+ ICAMN tertiary Sjogren’s syndrome
(MedRCs) CXCL13— support plasma immunization VCAMN lymphoid - increased ICAM/VCAM/
CCL21— cell survival - proliferative structure chemokine expression from
CDH11+ - regulate expansion formation with  ICAM/VCAM® state and
Thyt " plasma cell - increased collagen inflammation proliferative expansion in
BP3— (mouse) positioning expression murine model of Sjogren’s
BP3+ (human)
PDPN+ FAPa- - support - enriched for CXCL13, [437]
CD34- tertiary CCL19, and CCL21 in
lymphoid Sjogren’s syndrome.
structure
formation with
inflammation

Abbreviations: FRC: fibroblastic reticular cell, RC: reticular cell, FDC: follicular dendritic cell, TRC: T-zone reticular cell, DLE: discoid lupus erythematosus, SC: stromal cell, CRC: CXCL12-expressing

reticular cells, PDPN: podoplanin, PDGFRB: platelet-derived growth factor receptor-f.
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Figure 1

Fibroblast subsets in synovium and lymph node Shipman et al. 67
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Fibroblast and immune cell organization in lymph nodes and synovial tissue.

Upper left: In the lymph node, anatomically distinct structures are defined by the presence of unique immune cell types; including B cell follicles, T
cell zones and medullary cords with plasma cells. Lower left: Each of these regions contains fibroblasts with distinct phenotypes, such as the
follicular dendritic cells (FDC) in B cell follicles and fibroblastic reticular cells in T zone (TRC) and the vascular-rich medulla (medullary RC). Upper
right: In the inflamed synovial tissue from patients with rheumatoid arthritis (RA), aggregates of CD4 T and B cells typically arise near the
vasculature, whereas other immune cells are found in less organized patterns throughout the sublining. Lower right: Synovial fibroblasts are
thought to be of two major subclasses, the lining fibroblasts are organized in a layer that interfaces with the synovial fluid while sublining
fibroblasts are scattered throughout the extracellular matrix below the lining. In RA, at least two unique activated fibroblast phenotypes are
induced and will likely prove to localize in independent niches containing-specific immune cell types. The matching of colors of fibroblast subtypes
across synovium and lymph node are theoretical and based on the discussion in the text. Left panels adapted from Ref. [16°°].

expression [32°], and it will be interesting to understand
the extent to which parallel mechanisms are used by
these three lining cell systems.

MRCs have also been shown to provide FDC precursors
upon lymph node expansion during immune responses
[35] and are colocalized with ILLC3s [36], which poten-
tially reflects a role for MRCs in supporting I1.C3s and/or
ILC3s in supporting MRCs. It would be interesting to
understand if lining fibroblasts, or perhaps a subpopula-
tion of lining fibroblasts, can give rise to sublining fibro-
blasts and if ILLC3s are involved in synovial biology. In
this latter scenario, it is interesting to consider that ILC3s
are an important source of the L'TBR ligand L'Tal1B2
during the development of secondary lymphoid tissues
and stromal recovery after viral infection [37,38] and that
the L'TRR ligand inhibitor, I'TBR-Ig, ameliorated dis-
ease development in the collagen-induced arthritis model
[39]. While Baminercept, a humanized L'TBR-Ig fusion
protein, failed to meet primary endpoints in phase IIb
trials with RA patients who had failed either DMARD or
"I'NF-targeted therapies, it did reduce the IFN-I signa-
ture [40], and it may be possible that L'TBR signals may

play important roles in modulating the vascular-stromal
environment and IFN-I pathways in RA synovium.

CD34" fibroblasts exist both in the lymph node and
synovium (Table 1, Figure 1). In the lymph node,
CD34" fibroblasts are PDPN* and CDH11". These fibro-
blasts are positioned in the lymph node capsule and
medulla as perivascular cells and can potentially be
progenitors for FRC, MRC, and FDC-like cells as well
as pericytes [11,13,16°°]. CD34 also marks adipose-
derived stromal cells with progenitor functions [41] and
fibroblasts in quiescent skin that can upregulate PDPN
and Thyl in the fibrotic skin of the autoimmune disease
scleroderma [42]. CD34* fibroblasts have also been
described in inflamed salivary glands that have FRC
characteristics and in intestines, where they help to
maintain an epithelial stem cell niche [43°,44]. It will
be interesting to understand if synovial CID34" fibroblasts
can have progenitor functions or how they may contribute
to niche formation in the synovium.

Distinct FRCs have recently been described in the lymph
node medulla where plasma cells accumulate and are
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referred to as medullary FRCs (medRCs) (Figure 1).
MedRCs have been shown to be in close contact with
plasma cells and a key source of plasma cell survival
factors such as IL-6, BAFF, and CXCL12 [12°°]. The
medulla is rich in vessels and plasma cells, and the
sublining compartment of the synovium similarly con-
tains a dense network of blood and lymphatic vessels and
can be rich in plasma cells, raising the intriguing possi-
bilities that medRCs may share characteristics with some
sublining fibroblasts.

Follicular dendritic cells (FDCs) are mesenchymal-
derived cells located centrally within B cell follicles that
are essential for germinal center (GC) formation and high-
affinity antibody production (Table 1, Figure 1). They are
characterized by their high expression of CD21/CD35
(complement receptor type 2 and 1, respectively) [45,46].
FDCs have been described in the synovium in the
context of tertiary lymphoid structures [17]. Interestingly,
FDCs can derive from MRCs or CD34+ perivascular cells
[13,35,46,47], and it would be interesting to understand if
they could contribute to FDC generation in the ectopic
synovial germinal centers found in some RA patients.

Discussion

Classically defined as tissue-resident stromal cells
responsible for extracellular matrix generation and struc-
tural stability in a tissue, fibroblasts are now understood
as critical players in immune responses across tissue
types. In lymphoid tissues, fibroblasts have long been
understood as central contributors to the development of
adaptive immunity by providing both structural and
molecular factors essential to T cell and B cell activation
and survival. Lymph node studies have laid the ground-
work indicating a vast diversity of potential fibroblast
phenotypes, which can now be used as comparators to
classify fibroblasts from other tissues including, in par-
ticular, activated phenotypes elicited by inflammatory
triggers akin to a lymph node immunologic response.
Single-cell studies on inflamed synovial tissue from RA
patients has now shed light on at least 4 distinct fibro-
blast subsets, but from the experience of lymphoid
tissues, there is likely more granularity to be found with
additional studies. Understanding unifying themes such
as antigen acquisition and support of adaptive immunity
will be important in non-lymphoid tissues particularly in
the context of autoimmune diseases [31,32°]. Further,
whether inherently dysregulated differentiation of these
fibroblast subsets underlies pathogenesis in autoimmu-
nity will be an important direction to study in the coming
years. Lastly, it will be exciting to understand how
fibroblast subsets communicate with and for the greater
physiologic state of the body through conduits of the
lymph, vasculature, bone marrow and synovial fluid,
including how these resident tissue cells types are
shaped by perturbations possibly for long periods
through stable epigenetic or genetic modifications,

thereby leaving lasting imprints of immunologic and
inflammatory responses at the local tissue site.
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