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The recent advent of single-cell technologies has fast-tracked

the discovery of multiple fibroblast subsets in tissues affected

by autoimmune disease. In recent years, interest in lymph node

fibroblasts that support and regulate immune cells has also

grown, leading to an expanding framework of stromal cell

subsets with distinct spatial, transcriptional, and functional

characteristics. Inflammation can drive tissue fibroblasts to

adopt a lymphoid tissue stromal cell phenotype, suggesting

that fibroblasts in diseased tissues can have counterparts in

lymphoid tissues. Here, we examine fibroblast subsets in

tissues affected by autoimmunity in the context of knowledge

gained from studies on lymph node fibroblasts, with the

ultimate aim to better understand stromal cell heterogeneity in

these immunologically reactive tissues.
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Introduction
The heterogeneity of fibroblasts in secondary lymphoid

tissues has been long appreciated, in part because of the

notably distinct anatomic compartments populated by T
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versus B cells and aided by the finding of monoclonal

antibodies that recognized compartment-specific stromal

antigens. While studying the thymic stroma in the

1980’s, van Ewijk et al. generated a panel of monoclonal

antibodies. This panel included the ER-TR7 antibody,

which stained vascular structures in the thymus but more

robustly stained fibroblasts that comprised a reticular

network in the T zones of lymph nodes and spleen

[1,2]. In the early 1990’s, Farr and colleagues generated

the antibody clone 8.1.1 to study thymic epithelial cells,

and found that 8.1.1 labelled T zone reticular cells

similarly to ER-TR7 [3]. Using expression cloning, they

identified the antigen as gp38, now also known as podo-

planin, that is used as a defining marker of the reticular

cells now referred to as fibroblastic reticular cells [4].

Although reticular cells also resided in B cell follicles,

ER-TR7 and 8.1.1 notably did not stain these cells,

pointing to the compartment-specific nature of fibro-

blasts in lymphoid tissues. In the B cell follicles, the

distinct meshwork of fibroblast reticular cells, known as

follicular dendritic cells (FDCs) based on their morphol-

ogy, also attracted considerable attention due to their

capacity to bind immune complexes and interact closely

with the B cells. The FDCs, although initially thought to

be of the hematopoietic lineage, are now understood as

originating from mesenchymal stem cells based on line-

age tracing experiments and radioresistance patterns,

and are stained by antibodies such as FDC-M1 (now

known to recognize MFG-E8) and FDC-M2 (comple-

ment factor C4) [5,6]. In the late 1990’s, FDCs were

shown to be primary expressors of CXCL13, the ligand

for CXCR5, while T zone FRCs, among other cells,

expressed CCL19 and CCL21, the ligands for CCR7

[7]. This furthered the understanding of positional spec-

ificity for reticular cells that now included expression of

distinct lymphocyte support factors and laid the founda-

tion for subsequent studies.

Studies in the mid-2000s began to focus in on and

characterize lymph node stromal cells in greater detail.

These studies, often with the addition of flow cytometric

analysis that traded in positional information for more

granular protein expression information, led to further

delineation of stromal subsets within the B cell and T cell

compartments. During this period, marginal reticular cells

(MRCs) in the follicles were identified and T zone FRCs

were better characterized [4,8,9]. It became clear that

there was heterogeneity even within the T zone, as high
Current Opinion in Immunology 2020, 64:63–70
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VEGF expression marked a subset of FRCs that were

enriched in vascular-rich regions [10]. Sorting and tran-

scriptomic analysis along with accelerating interest in

stromal cells in the last eight years further expanded

our understanding of FRC subsets and potential func-

tions, including the identification of PDPN-neg fibro-

blasts that resemble pericytes, cortical reticular cells,

BP3-CD34+ cells that have a perivascular location in

the medulla, medullary fibroblasts, and the understanding

that FRCs, like synovial fibroblasts, can express cadherin

11 (CDH11) [11,12��,13–15]. More recently, Rodda et al.
used single-cell RNAseq to examine lymph node stromal

cells, identifying 3 subsets of T zone reticular cells and

2 subsets that were enriched in the medulla, in addition to

delineating the FDCS, MRCs, perivascular cells, and

CD34+ cells [16��].

In the last two decades, synovial fibroblasts in rheuma-

toid arthritis (RA) have been increasingly recognized as

active participants in joint inflammation and injury and

encompassing heterogeneous phenotypes. Synovial

fibroblasts were observed in the rheumatoid synovium

that share characteristics with those in lymphoid tissues

[17–19], and this paralleled the development of the

understanding that tissue inflammation can drive the

adoption of lymphoid tissue reticular cell phenotype

[20,21]. Recently, high dimensional analysis of human

synovial fibroblasts using single cell RNAseq and mass

cytometry (CyTOF) have helped to define multiple

fibroblast subsets in the inflamed synovium. Here, we

examine synovial fibroblast subsets in the context of

insights gained from studies on lymph node fibroblasts,

with the goal of better conceptualizing the heterogeneity

in both tissues.

Lymph node and synovial stromal subsets: are
there parallels?
Synovial fibroblasts can be divided into two general

categories based on anatomic location. The lining fibro-

blasts, together with macrophages, produce and turn

over the synovial fluid and provide an epithelial-like

layer that separates the fluid from the sublining, albeit

without a basement membrane. Sublining fibroblasts are

interspersed within and likely responsible for generating

the extracellular matrix that constitutes the bulk of the

mass of the sublining tissue under homeostatic states.

Lining fibroblasts are marked by CD55+PRG4+ and

Thy1(CD90)lo, in contrast to sublining fibroblasts that

exhibit CD55-PRG4- and Thy1(CD90)+ [18,22��

,23,24��,25��,26��]. Similar to lymph node FRCs, both

lining and sublining fibroblasts in human and mouse

synovium are PDPN+ and FAPa+ [22��,26��,27]
(Table 1), suggesting a degree of resemblance among

these fibroblast populations. Sublining fibroblasts

resemble lymph node FRCs in expressing Thy1, albeit

at higher baseline levels, and both FRCs and sublining

fibroblasts further upregulate Thy1 upon an
Current Opinion in Immunology 2020, 64:63–70 
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inflammatory challenge [22��,26��,28,29] (Table 1).

Synovial sublining fibroblasts undergo proliferative

expansion upon inflammation, much like FRCs do upon

lymph node inflammation and swelling [22��,26��,30]
(Table 1). In RA synovium, a subset of sublining fibro-

blasts exhibit MHCIIhi CD34- Thy1+ (mirroring the

CD34-Thy1+ murine sublining cells), and both express

inflammatory cytokines and chemokines, much like

FRCs as a whole. In particular, one of the sublining

fibroblast subtypes express high levels of IL-6 and

CXCL12 [22��,26��], reminiscent of the constitutive

and widespread stromal IL-6 and CXCL12 expression

by FRCs throughout lymph nodes [12��,15] (Table 1).

While tertiary lymphoid structures can form in rheuma-

toid synovium, they are relatively rare in frequency, and

T and B cells typically accumulate in spherical aggregates

wherein both cell types interspersed without distinct

regions such as in the lymph node. In single cell RNA-

seq examination of synovium, there was no obvious

population that resembled the largest FRC subset, the

T zone FRCs (TRCs), in expressing CCL21 or CCL19 or

the T zone and follicular stromal marker BP-3. However,

MHCIIhi CD34- sublining cells resemble the CCL19hi

subset of TRCs that populate the majority of the T zone,

as they are high expressers of extracellular matrix com-

ponents (and CD34-/lo). In expressing interferon response

genes and MHCII, they also resemble the CXCL9+

subset of TRCs that may represent IFN-activated

CCL19hi TRCs [16��,26��] (Table 1). Thus, the sizable

population of synovial sublining fibroblasts resemble

TRCs (Figure 1).

Anatomically, synovial lining fibroblasts share similarities

with lymph node marginal reticular cells (MRCs) that sit

at the back border of the B cell follicles just under the

floor of the subcapsular sinus (Figure 1). Notably, both

lining fibroblasts (in mice) and MRCs are unique from

other fibroblasts in their tissues in expressing high levels

of RANKL (Table 1). RANKL is a driver of osteoclas-

togenesis and of macrophage development more gener-

ally, and the RANKL expression by both lining fibro-

blasts and MRCs may reflect their shared function in their

unique anatomic locations in this regard. Osteoclast acti-

vation by lining fibroblast-derived RANKL would be

consistent with their role in mediating bone and cartilage

damage in inflammatory arthritis [22��], and MRC-

derived RANKL is important for maintenance of

CD169+ sinusoidal macrophages [33�] that play impor-

tant roles in limiting viral dissemination [34]. Interest-

ingly, Wilms’ Tumor1 (WT1)+ mesothelial cells, epithe-

lial-like cells that line cavity surfaces such as the

peritoneum, resemble synovial lining cells and MRCs

in their lining function and their ability to modulate

macrophages and B cells [31,32�]. The WT1+ mesothelial

cells along with WT+ fibroblasts were recently shown to

maintain peritoneal macrophages via retinoic acid
www.sciencedirect.com
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Table 1 (Continued )

Lymph Node Synovium Skin

Fibroblast Subtype Phenotype Function Inflammatory State Ref. Fibroblast

Subtype

Phenotype Function Inflammatory

state

Ref. Fibroblast

Subtype

Phenotype Function Inflammatory state Ref.

Marginal reticular cells

(MRCs)

PDPN

+ CXCL13+

MAdCAM

+ Tnfsf11+

CDH11+

Thy1�/lo BP3+

- back of the B

cell follicle near

subcapsular

sinus

- express

CXCL13 and

BAFF

- express

RANKL to

support

macrophages

- can give rise

to FDCs

- increased PDPN

expression with

immunization

[11,12] CD55+ PDPN

+ Thy1-

CD34+/�
HLA-DRhi

CDH11

+/�
FAPa+

- lining

fibroblasts

- express RANKL

- can promote

cartilage

destruction.

- increased PDPN

and aSMA

expression in

rheumatoid

arthritis

[18,22��,25��,
26��,51]

CXCL12-expressing

reticular cells

(CRCs)

PDPN+

CXCL12+

CDH11+

Thy1�/lo

- regulate B cell

trafficking and

germinal center

responses

- pre-existing follicular

CRCs later form

germinal center dark

zone CRCs during

immune responses

[15,16��,52] Salivary Gland

Medullary reticular

cells

(MedRCs)

PDPN+

CXCL12+

CXCL13�
CCL21�
CDH11+

Thy1�/lo

BP3� (mouse)

BP3+ (human)

- express BAFF

and IL-6 to

support plasma

cell survival

- regulate

plasma cell

positioning

- increased PDPN

expression with

immunization

- proliferative

expansion

- increased collagen

expression

[12��] PDPN+

CD34+

FAPa+

ICAMhi

VCAMhi

- support

tertiary

lymphoid

structure

formation with

inflammation

- enriched for IL7 and BAFF in

Sjogren’s syndrome

- increased ICAM/VCAM/

chemokine expression from

ICAM/VCAMlo state and

proliferative expansion in

murine model of Sjogren’s

[43�]

PDPN+

CD34�
FAPa- - support

tertiary

lymphoid

structure

formation with

inflammation

- enriched for CXCL13,

CCL19, and CCL21 in

Sjogren’s syndrome.

[43�]

Abbreviations: FRC: fibroblastic reticular cell, RC: reticular cell, FDC: follicular dendritic cell, TRC: T-zone reticular cell, DLE: discoid lupus erythematosus, SC: stromal cell, CRC: CXCL12-expressing

reticular cells, PDPN: podoplanin, PDGFRb: platelet-derived growth factor receptor-b.
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Figure 1
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Fibroblast and immune cell organization in lymph nodes and synovial tissue.

Upper left: In the lymph node, anatomically distinct structures are defined by the presence of unique immune cell types; including B cell follicles, T

cell zones and medullary cords with plasma cells. Lower left: Each of these regions contains fibroblasts with distinct phenotypes, such as the

follicular dendritic cells (FDC) in B cell follicles and fibroblastic reticular cells in T zone (TRC) and the vascular-rich medulla (medullary RC). Upper

right: In the inflamed synovial tissue from patients with rheumatoid arthritis (RA), aggregates of CD4 T and B cells typically arise near the

vasculature, whereas other immune cells are found in less organized patterns throughout the sublining. Lower right: Synovial fibroblasts are

thought to be of two major subclasses, the lining fibroblasts are organized in a layer that interfaces with the synovial fluid while sublining

fibroblasts are scattered throughout the extracellular matrix below the lining. In RA, at least two unique activated fibroblast phenotypes are

induced and will likely prove to localize in independent niches containing-specific immune cell types. The matching of colors of fibroblast subtypes

across synovium and lymph node are theoretical and based on the discussion in the text. Left panels adapted from Ref. [16��].
expression [32�], and it will be interesting to understand

the extent to which parallel mechanisms are used by

these three lining cell systems.

MRCs have also been shown to provide FDC precursors

upon lymph node expansion during immune responses

[35] and are colocalized with ILC3s [36], which poten-

tially reflects a role for MRCs in supporting ILC3s and/or

ILC3s in supporting MRCs. It would be interesting to

understand if lining fibroblasts, or perhaps a subpopula-

tion of lining fibroblasts, can give rise to sublining fibro-

blasts and if ILC3s are involved in synovial biology. In

this latter scenario, it is interesting to consider that ILC3s

are an important source of the LTbR ligand LTa1b2
during the development of secondary lymphoid tissues

and stromal recovery after viral infection [37,38] and that

the LTbR ligand inhibitor, LTbR-Ig, ameliorated dis-

ease development in the collagen-induced arthritis model

[39]. While Baminercept, a humanized LTbR-Ig fusion

protein, failed to meet primary endpoints in phase IIb

trials with RA patients who had failed either DMARD or

TNF-targeted therapies, it did reduce the IFN-I signa-

ture [40], and it may be possible that LTbR signals may
www.sciencedirect.com 
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play important roles in modulating the vascular-stromal

environment and IFN-I pathways in RA synovium.

CD34+ fibroblasts exist both in the lymph node and

synovium (Table 1, Figure 1). In the lymph node,

CD34+ fibroblasts are PDPN+ and CDH11+. These fibro-

blasts are positioned in the lymph node capsule and

medulla as perivascular cells and can potentially be

progenitors for FRC, MRC, and FDC-like cells as well

as pericytes [11,13,16��,]. CD34 also marks adipose-

derived stromal cells with progenitor functions [41] and

fibroblasts in quiescent skin that can upregulate PDPN

and Thy1 in the fibrotic skin of the autoimmune disease

scleroderma [42]. CD34+ fibroblasts have also been

described in inflamed salivary glands that have FRC

characteristics and in intestines, where they help to

maintain an epithelial stem cell niche [43�,44]. It will

be interesting to understand if synovial CD34+ fibroblasts

can have progenitor functions or how they may contribute

to niche formation in the synovium.

Distinct FRCs have recently been described in the lymph

node medulla where plasma cells accumulate and are
Current Opinion in Immunology 2020, 64:63–70
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referred to as medullary FRCs (medRCs) (Figure 1).

MedRCs have been shown to be in close contact with

plasma cells and a key source of plasma cell survival

factors such as IL-6, BAFF, and CXCL12 [12��]. The

medulla is rich in vessels and plasma cells, and the

sublining compartment of the synovium similarly con-

tains a dense network of blood and lymphatic vessels and

can be rich in plasma cells, raising the intriguing possi-

bilities that medRCs may share characteristics with some

sublining fibroblasts.

Follicular dendritic cells (FDCs) are mesenchymal-

derived cells located centrally within B cell follicles that

are essential for germinal center (GC) formation and high-

affinity antibody production (Table 1, Figure 1). They are

characterized by their high expression of CD21/CD35

(complement receptor type 2 and 1, respectively) [45,46].

FDCs have been described in the synovium in the

context of tertiary lymphoid structures [17]. Interestingly,

FDCs can derive from MRCs or CD34+ perivascular cells

[13,35,46,47], and it would be interesting to understand if

they could contribute to FDC generation in the ectopic

synovial germinal centers found in some RA patients.

Discussion
Classically defined as tissue-resident stromal cells

responsible for extracellular matrix generation and struc-

tural stability in a tissue, fibroblasts are now understood

as critical players in immune responses across tissue

types. In lymphoid tissues, fibroblasts have long been

understood as central contributors to the development of

adaptive immunity by providing both structural and

molecular factors essential to T cell and B cell activation

and survival. Lymph node studies have laid the ground-

work indicating a vast diversity of potential fibroblast

phenotypes, which can now be used as comparators to

classify fibroblasts from other tissues including, in par-

ticular, activated phenotypes elicited by inflammatory

triggers akin to a lymph node immunologic response.

Single-cell studies on inflamed synovial tissue from RA

patients has now shed light on at least 4 distinct fibro-

blast subsets, but from the experience of lymphoid

tissues, there is likely more granularity to be found with

additional studies. Understanding unifying themes such

as antigen acquisition and support of adaptive immunity

will be important in non-lymphoid tissues particularly in

the context of autoimmune diseases [31,32�]. Further,

whether inherently dysregulated differentiation of these

fibroblast subsets underlies pathogenesis in autoimmu-

nity will be an important direction to study in the coming

years. Lastly, it will be exciting to understand how

fibroblast subsets communicate with and for the greater

physiologic state of the body through conduits of the

lymph, vasculature, bone marrow and synovial fluid,

including how these resident tissue cells types are

shaped by perturbations possibly for long periods

through stable epigenetic or genetic modifications,
Current Opinion in Immunology 2020, 64:63–70 
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